9,140 research outputs found

    A Fully Time-domain Neural Model for Subband-based Speech Synthesizer

    Full text link
    This paper introduces a deep neural network model for subband-based speech synthesizer. The model benefits from the short bandwidth of the subband signals to reduce the complexity of the time-domain speech generator. We employed the multi-level wavelet analysis/synthesis to decompose/reconstruct the signal into subbands in time domain. Inspired from the WaveNet, a convolutional neural network (CNN) model predicts subband speech signals fully in time domain. Due to the short bandwidth of the subbands, a simple network architecture is enough to train the simple patterns of the subbands accurately. In the ground truth experiments with teacher-forcing, the subband synthesizer outperforms the fullband model significantly in terms of both subjective and objective measures. In addition, by conditioning the model on the phoneme sequence using a pronunciation dictionary, we have achieved the fully time-domain neural model for subband-based text-to-speech (TTS) synthesizer, which is nearly end-to-end. The generated speech of the subband TTS shows comparable quality as the fullband one with a slighter network architecture for each subband.Comment: 5 pages, 3 figur

    Entropy in the Kerr-Newman Black Hole

    Get PDF
    Entropy of the Kerr-Newman black hole is calculated via the brick wall method with maintaining careful attention to the contribution of superradiant scalar modes. It turns out that the nonsuperradinat and superradiant modes simultaneously contribute to the entropy with the same order in terms of the brick wall cutoff ϵ\epsilon. In particular, the contribution of the superradiant modes to the entropy is negative. To avoid divergency in this method when the angular velocity tends to zero, we propose to intr oduce a lower bound of angular velocity and to treat the case of the angular momentum per unit mass a=0a=0 separately. Moreover, from the lower bound of the angular velocity, we obtain the θ\theta-dependence structure of the brick wall cutoff, which natu rally requires an angular cutoff δ\delta. Finally, if the cutoff values, ϵ\epsilon and δ\delta, satisfy a proper relation between them, the resulting entropy satisfies the area law.Comment: 16 pages, Latex, no figures, References are included, Subsection A and B are reduced to subsection A, Abstract is rewritten, Minor corrections are include

    韓国語教育における新しい成績評価 : 教師と学習者が共に行う形成的評価

    Get PDF

    日韓社会の人生儀礼における「祭」とその始まり : 前近代の状況を踏まえて

    Get PDF
    corecore